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in which 

***(>) = E Cll{k)^j]H-T,r'}Yl^~^{f)xT, 

g*(JE,r) = | > ( £ + l ) A ] * { }+, 

/*(£,r) = f[>(-E-l)/ ir]*{ }_, 

{ }±=[^/2|r(|^|+zV)||x|i^-vr(2|^i+i)] 

X{(\k\+iv)e^e-xl2 

XiFi(\k\+l+iv,2\k\+l,x)±c.c.}, 

x= —2ipr. 

By means of the methods described in Ref. 6, the 
scattering solution given by Eq. (3) may be written in 
the Johnson-Deck form 

^ = {N+i\My,u' (p-f)+L[jj- {p-?)~]{vp)}U{p), (8) 

and consequently all the results4 pertaining to this form 
may be used. Here, U(p) is a plane wave spinor of 
arbitrary polarization. The functions N, M, and L are 

given by 

00 

tf=2E {-\)kxh~lexl*ev*i2 

x[r(&-^/r(2&+i)](&2+x2)^ 
XiF1(k-ip2k+l,x)ZP^1'($.f)-Pk'($'t)l, (9) 

M^-iT(l--ip)ev*l2ei»-TiF1tl+ip,2,i(pr-p'r)'], (10) 

L = i ( i ^ o - i V ) . (11) 

For A=0, the series for iV can be summed to yield 

Nx==o=T(l-iv)ev^ei^1F1ZivXi(pr-Vr)l. (12) 

In Eq. (9) the prime indicates the derivative of the 
Legendre polynomial P with respect to its argument 
(p-r). 

These functions may now be directly compared with 
the corresponding ones for the Dirac-Coulomb case6 for 
which all three functions are given as infinite series. 
The main difference is that the scattering solution for 
the Biedenharn Hamiltonian has simpler parameters in 
the 1F1 functions and the function M is expressible in 
closed form. In fact, M is exactly the same as that for 
the Sommerfeld-Maue approximation, while TV" and L 
differ from the Sommerfeld-Maue approximation by 
order X2. 
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A new method in the theory of unstable particles is introduced. It is applied in this paper to a simple model 
to show how the exponential regime of the decay can be isolated systematically. It is further shown that our 
method prescribes the precise conditions to which the initial wave function must be submitted for this 
exponential decay to ensue. The prescription of these conditions constitutes in fact a definition of an "un­
stable particle" in quantum theory. 

INTRODUCTION 

IN this paper we shall be concerned with the classi­
fication of the decay regimes of unstable particles. 

The first task of the theory is that of isolating the ex­
ponential decay. I t will be shown, by means of an il­
lustrative model, how this can be accomplished system­
atically. Furthermore, it will be shown that the 
method is sufficiently powerful to allow for the deter­
mination of the precise conditions to be imposed on the 
initial wave packet for such an exponential decay. 

The mathematical apparatus has been introduced 

recently by one of us1 and applied to nonequilibrium 
statistical mechanics. Analogies with the results of Ref. 
1 are numerous and will occasionally be noted. Previous 
treatments of unstable states are surveyed in Ref. 2. 

For illustration we shall carry out our calculations 
with a model due to Wigner and Weisskopf.3,4 

1 G. Sandri, Ann. Phys. (N. Y.) 24, 332 (1963). This paper con­
tains the lectures on the Foundations of Non-Equilibrium Sta­
tistical Mechanics, given at Rutgers (1961-62). 

2 M. Goldberger and K. Watson, Collision Theory (John 
Wiley & Sons, Inc., New York, 1964). 

3 E. Wigner and V. Weisskopf, Z. Physik 63, 62 (1930). 
4 M. Wellner, Phys. Rev. 118, 875 (1960). 
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The equations for the model are written as 

{(dO/dO+TPd^eUx, 

i(dx/dt)-nx -I uedx, 

(i) 

(2) 

where 6 is a function of x and t while x is a function of 
t alone. Z7(x) is a (given) real form factor, ix is real. The 
model can be made to correspond to the process 
A ±^ N+6 by taking % to be the wave function of the A 
particle and 0(x,t) to be the wave function of the N—6 
system.5 The criterion for stability of the eigenstate 
corresponding to the "physical A" is exhibited in 
Ref. 4. 

We shall show that the quantity 

i^X*X (3) 

exhibits an exponential decay under precise conditions 
calculable from (1) and (2). The behavior of the flux 

is analogous. 

i / (0*V0- dvd*)-ds 

EXPONENTIAL REGIME 

We obtain from (2) and (3) 

i(dP/dt)=e2iIm\ jx* fuedxl. (4) 

Perturbation expansion in powers of e leads to terms 
that diverge for large time. Such an expansion is there­
fore inadequate to describe decay. In order to obtain 
an expansion in e which is valid for long times, and 
which will therefore enable us to follow the decay of P , 
we introduce "extended functions,"1 as follows. We 
embed the temporal domain of 0, x, and P into a space 
of three independent time variables TO, TI, and T<L and we 
consider "extended" functions 6(X,T0 ,TI,T2) , 2C(ro,ri,T2) 
and P(TO,TI,T2) which have the following three 
properties: 

(i) The extended functions coincide with 0, x> and P 
along the "trajectories" 

ro=t, n—et, T2=€2t. (5) 

This is expressed as 

O(x,^,e2O = 0(x,O, (6) 

2cM,e2/) = x(0, (7) 

?(t,d,A) = P(t). (8) 

(ii) The time derivatives of 0, £> and P are given by 

ae ae ae ae 
— = — + € — + 6 2 — : 
dt dro dri dr2 

(9) 

6 This model is in fact equivalent with the lowest sector of the 
Lee model (Sandri, 1958, unpublished; see Ref. 4). 

d 2 c „ 

dt 

aP 

dt 

dro 

aP 

= —+ 
aTo 

ax 

dr\ 

dp 
e + 
aTi 

â c 
e2 

aT2 

aP 
e2 

aT2 

(10) 

(11) 

(iii) 8, x> a n d P have asymptotic expansions in e 
which are uniformly valid in the three independent 
variables TO, n , ri and which have the form 

e=e0+eei+e2e2+o(€3), 
JC=Ko+«2Ci+«2X2+0(e3), 

P = P o + e P H - e 2 P 2 + 0 ( e 3 ) . 

(12) 

(13) 

(14) 

Substituting the expansions (9) to (14) into (1), 
(2), and (4) we find, in zeroth order 

i(ae0/aTo)+v2e0=o, (is) 
i(d%o/dTo)—M2Co=0, (16) 

<(dPo/dTo) = 0. (17) 

In first order we obtain from (1), (2), and (4), 
respectively, 

ae0 aei 
i—+i—+V2e!=t/2Co 
aTi aTo 

^xo axi 
dr± dro I Utoodx 

ap 0 aPi 
i \-i-~—•== 2i Im| 

aTi aTo 
{"»>*/V<>o<fc"| • 

The solution of (15) will be written as 

eo(r0)=e+iv2r°e0(o). 

(18) 

(19) 

(20) 

(21) 

The "simple initial value problem/'6 defined by the 
condition 

e0(0) = 8i(0) = 0 (22) 

represents a "pure A" initially. For this case, the inte­
gration of (18) yields 

/•ro 

ei(ro) = - t / e^+^UxodX. 
Jo 

Employing the notation7 

(23) 

<P 

Jo 0 

and the symbol ~ to read "asymptotically in TO," we 
obtain 

ei(To)-f(V2+M)*72Co (24) 

6 For the analogous situation in statistical dynamics see Chap. 
7, Sec. A of Ref. 1. 

7 See, for example, W. Heitler, Quantum Theory of Radiation 
(Oxford University Press, New York, 1954), 3rd. ed., p. 69. 
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and its complex conjugate 

0 1 * ( r o ) ~ - f ( - V 2 - M ) ^ o * . 

Inserting (22) into (20) we find 

<9Po dPi 
+ — = 0 , 

dri 3TO 

which, by virtue of (17), can be integrated to 

dPo 
PI(TO) = P I ( 0 ) - T O -

d r i 

(25) 

(26) 

(27) 

We now shall prove that the exponential decay law 
exhibited for the simple initial value problem [Eq. (36)] 
results from a general class9 of initial 0(0). 

Using the integral (21), Eqs. (18), (19), and (20) 
yield, respectively, 

d8i dOo(0) 
i—+ V20i= Uxo-ie*2^ : (39) 

From the requirement (iii) that we imposed on the 
extended functions [[Eq. (14)] we must have 

% MJCi 
6 To 

dPi aP 0 

= - * + / Ue* 
dn J 

^"00(0)dx, (40) 

6P!/Po=0(e) for all TO. 

From (27) we then conclude 

dP 0 /3r i = 0 

and hence, from (26), 

d?!/dT0=0. 

(28) 

(29) 

(30) 

dPi ap0 r r 1 
i + * =2* Im sco* / f/e^r„e0(0)cfx . (41) 
dro d r i L J J 

Since the wave function exppV2r0]Oo(0) represents 
a free wave packet, we have 

By entirely similar reasoning we obtain from (19), 
for the simple initial value problem (22), 

^v2roe0(o)-o 

and therefore, from (39), 

Oi(ro)~^ 2-o e i(0)^(V 2+/x)^2Co. 

(42) 

(43) 

and 
2Co(ro,ri,r2) = 6r-^r02Co(o,0,r2) (31) 

From (40) and (41) we find that Eqs. (29) to (32) 
are valid asymptotically for large ro provided10 

d2Ci/dTo—/*Xi = 0 . (32) 

Turning now to the second-order equation for dF/dt, / > / w 
(v2+/x)Xeo(0)Jx<oo. (44) 

<9P2 d P i a P 0 

l )-i j_£ = 2i Im 
dro dn dr2 

'2ilm\ 2Co*/Vf(V*+M)^xXol (33) 

From (33) we also find, taking (43) into account, that 
we shall recover the exponential behavior (34) to (36) if 

/ > / 

Z7 e i ( v s +*)x f t l ( 0 y x < oo (45) 

we obtain 
d P 2 / d r 0 ~ 0 (34) 

d P j / d r ^ O . (35) 

Inserting (34) and (35) into (33), we conclude that 

dPo/dT 2=-APo (36) 

with the expression for the decay constant8 

The equations (44) and (45) are the conditions that 
the wave functions 6o and 6i must satisfy initially if 
the quantity Po, which "forgets" how the system was 
prepared, is to be defined. 

• / 
2 Im / U£Udx 

(37) 

2V +271-/ U8(V2+ij,)Udx. 

8 This result can also be derived from the second-order equation 
for 2C- We find in fact 

idXo/dTz^EftQ 

with E = fU${V2+ix)Udx. Note that A - - 2 ImJE. 

9 For the analogous situation in statistical dynamics see Chap. 
7, Sec. 8 of Ref. 1. 

10 The transient approach to the epxonential regime, that is, the 
behavior on the fast (ro) clock, can be readily calculated with our 
method. Thus, in first order we obtain from (20), by virtue of (29), 
the fast rate of change 

id?1/dro = 2i Imf"^* futiodxl 

and for the second order we obtain, by virtue of (35) and (36), 

ifaP2/aro = 2iImr2Co*/'wv2roei(0)c/x+2Ci*/'^Ood:x 


